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Mean-field theory of hot sandpiles
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We introduce a temperaturelike paramélein a mean-field theory of sandpiles. We show that, in contrast
with evolution and growth models, self-organized criticality in sandpiles exists @a#t with exponents that
do not depend on the temperature. We provide an explanation for the difference in the behavior of sandpiles
and the other model$S1063-651X97)00905-7

PACS numbeps): 64.60.Lx, 05.40+j

The idea of self-organized criticalitySOC was intro- average number of grains created by one grain at the next
duced by Bak, Tang, and Wiesenfé¢ld to explain the ubig- time step. By mapping this model to a branching process it is
uity of spacial and temporal fractals in nature. In their pio-straightforward to shoW7,11] that if m— 1, then the system
neering work[1], they proposed sandpiles as the simplests in a critical state and the distributions of both avalanche
model of SOC. In this paper we study the role of temperasizesD ;(s) and duration®,(t) are described by power laws
turelike parametef in a mean-field theory of sandpiles. We Dy(s)~s™ ""! andD,(t)~t®, with the usual values for the
consider the model considered to be similar to the two-statexponentsr=5/2 andb=2. If m# 1, then the criticality is
sandpile model, studied numerically by Marr2a. destroyed and there appears a characteristic avalanche size

It was previously showr{3] that temperature plays an s,, and characteristic avalanche duraticn,: D(S)
important role in other models that exhibit SOC behavior,~s™ 7" exp(—s/s,,) and Dy(t)~t ® exp(—t/ty) with s,
such as Sneppen growth modpdg (where the introduction  ~1/(1—m)? andt,,~1/(1—m).
of a nonzero temperature changes the model universality To find the value ofm in the steady state, eventually
clasg or the Bak-Sneppen evolution modél] (where SOC  reached by the system, one can write the master equation for
is possible only at zero temperatur®n the other hand, in this model, which is, as usual, a balance equation, stating
recent work[6] Caldarelli, Maritan, and Vendruscolo intro- that the change in the number of sites of a given height
duced a temperaturelike parameter in an ordinary sandpilequals the number of sites that change their height ds to
model, studied it numerically, and showed that SOC exists ahinus the number of sites of height which change their
all temperatures, although with exponents, which chang@eights fromi to some other value:
continuously with temperature. In this paper we introduce a
temperaturelike parameter, in a spirit similar to that of the
work [6], in the mean-field theory of sandpiles proposed by ~ Pi(t+1)=P;(t)+ 2 [P;(OT;()—Pi(OT;(O], (D)
us earlier[7]. We show that in our model SOC exists at all

finite temperatures and that exponents in our mean-field o .op. (1) is the fraction of sites of heigfitat timet and
model do not depend on the temperature and coincide W'tl?’ is the transition probability for any given site of height
the usual mean-field exponerjg-10. i to change its height tg. If one makes an approximation

We consider the folloyvmg vanan_t of the_ usual Sandpllethat there are only sites with heights of 0, 1, 2, and 3 and that
model[7]: on each ofN sites we define an integer number P,<1 andP,<1, then the relevarf; are
’ ij

z; that represents the number of sand grains at this site. At?
every time step, eact is increased by 1 with a probability To1=T2=Ta=hvo+(1—h)v,,
h<1: zz—z+1. If z exceeds.=1, then at the next time
step it topplesz;—z,—2 and releases two grains of sand. To=hvi+(1=h)v,,
With a probabilitye<1, one of these grains leaves the sys-
tem and the other one lands on a randomly chosen site, and Tos=Tos=hv,,
the height of this site is increased by 1. With a probability
1— ¢, both grains land somewhere in the system. To emulate Too=T3;=(1—h)vy,
the effects of the temperature, we allow a site with 1 grain of
sand to topple with probabilityr=exp(—1/T), if that site T10=7A:T 20,
received a grain of sand at the preceding time step. After the
toppling, with a probability *- €, a grain is transferred to a T1o=(1—7A) T+ AT 0z,
randomly chosen site, whereas with a probabiithis grain
is lost. e<1 is a measure of the dissipation and represents T13=(1— 7A) Topt+ 7AT o3,
the probability of a site to be on the boundary of the system.
The SOC state is reached by first lettihg—0, and then T30=0,
e—0.

The dynamics of the avalanches are controlleary the ~ where

oo
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vo=1—A+A?2, To summarize, we have introduced a temperaturelike pa-
rameter in the mean-field model of sandpiles and showed
vi=A—A?, that in our model SOC exists at all<cw, in contrast with
other modeld 3] and in agreement with the findings [8].
vp=A%2. Thus, our results demonstrate that SOC in sandpile models is

. robust with respect to thermal fluctuations, which can help
A:(Zfe)[PZ(t)+P3(t)].+ (.1_6) WACP‘.(t) is the number explain why fractals in nature are not destroyed by these
of grains of sand, red|str|buted. at time step' gnd Ac fluctuations. The difference between effects of the tempera-
:.T°1[.P°(t_l).+ PZ(t_l)]/P.l(t) IS th? prol_aablllty of & turelike parameter on the SOC models considerd@jrand
site with 1 grain to have received a grain during the Ior(:“V'Ou%andpiles is due to the fact that the dynamics of the models
timg step A is the ratio .Of the total ”“mbef of sites with 1 considered i3] are extremal. In these extremal models, at
grain to the number of _S|tes that 0 or 2 grams_at the prec'_edévery time step the dynamics are restricted to the “smallest”
Ing time step and recellv.ed 1 grain, .t.hus turning into a SItG\site, the site where the pinning force is minimgrowth
with 1 grain. The transition probabiliti€s;; are calculated n,4e18 or the site representing the species with the smallest
by a straightforward generalization of the procedure dey,rier to mutatdevolution model. In such models, the in-
scribed l_n[7]. L , _ ... troduction of even an infinitesimally small temperature al-
In this approximation one finds in the usual limit s 5 sites to participate in the dynamics. Because of that,
e,n/e—0 that in the steady stat®o=1/(2—m), P1=(1  he chances of choosing the smallest site become negligible;
—m)/(2—m), P3,P3—0. In this limit, m=7Po+2P,=1  5yhq9h other sites have a smaller probability of being cho-
and the system self-organizes to a critical steady state chaly, there are a lot of them. As a result, the dynamics of the
acterized by the absence of a characteristic time or length,oqe| change completely. In contrast, in sandpiles the intro-
scale, independent of the temperature, as long as it is finitey ,ction of a temperaturelike parameter is equivalent to
The caseT=x (7=1) is special because here not only is changing local rules, which do not affect the global dynam-
the average number of grains created by one grajrl, but  jcs Thus sandpiles are truly self-organized and critical, un-
the actual number of grains created by one grain at everyyea their cousins involving extremal dynamics.
time step is exactly 1. [T =, then in the steady state there
is only one sand grain in the system and that grain is hopping | am indebted to Jayanth Banavar and Amos Maritan for

around forever, representing one infinite avalanche. useful discussions.
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