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Mean-field theory of hot sandpiles
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~Received 12 November 1996!

We introduce a temperaturelike parameterT in a mean-field theory of sandpiles. We show that, in contrast
with evolution and growth models, self-organized criticality in sandpiles exists at allT,` with exponents that
do not depend on the temperature. We provide an explanation for the difference in the behavior of sandpiles
and the other models.@S1063-651X~97!00905-7#

PACS number~s!: 64.60.Lx, 05.40.1j
io
es
ra
e
ta

n
or

al

-
p
s
ng
e
h
b
ll
e
wi

ile
er
.
y

d
s
a
ity
la
o

th

n
m

next
it is

he
s

size

y
n for
ting
t
to

ht
n
that
The idea of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld@1# to explain the ubiq-
uity of spacial and temporal fractals in nature. In their p
neering work@1#, they proposed sandpiles as the simpl
model of SOC. In this paper we study the role of tempe
turelike parameterT in a mean-field theory of sandpiles. W
consider the model considered to be similar to the two-s
sandpile model, studied numerically by Manna@2#.

It was previously shown@3# that temperature plays a
important role in other models that exhibit SOC behavi
such as Sneppen growth models@4# ~where the introduction
of a nonzero temperature changes the model univers
class! or the Bak-Sneppen evolution model@5# ~where SOC
is possible only at zero temperature!. On the other hand, in
recent work@6# Caldarelli, Maritan, and Vendruscolo intro
duced a temperaturelike parameter in an ordinary sand
model, studied it numerically, and showed that SOC exist
all temperatures, although with exponents, which cha
continuously with temperature. In this paper we introduc
temperaturelike parameter, in a spirit similar to that of t
work @6#, in the mean-field theory of sandpiles proposed
us earlier@7#. We show that in our model SOC exists at a
finite temperatures and that exponents in our mean-fi
model do not depend on the temperature and coincide
the usual mean-field exponents@8–10#.

We consider the following variant of the usual sandp
model @7#: on each ofN sites we define an integer numb
zi that represents the number of sand grains at this site
every time step, eachzi is increased by 1 with a probabilit
h!1: zi→zi11. If zi exceedszc51, then at the next time
step it toppleszi→zi22 and releases two grains of san
With a probabilitye!1, one of these grains leaves the sy
tem and the other one lands on a randomly chosen site,
the height of this site is increased by 1. With a probabil
12e, both grains land somewhere in the system. To emu
the effects of the temperature, we allow a site with 1 grain
sand to topple with probabilityp5exp(21/T), if that site
received a grain of sand at the preceding time step. After
toppling, with a probability 12e, a grain is transferred to a
randomly chosen site, whereas with a probabilitye this grain
is lost. e!1 is a measure of the dissipation and represe
the probability of a site to be on the boundary of the syste
The SOC state is reached by first lettingh→0, and then
e→0.

The dynamics of the avalanches are controlled bymj , the
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average number of grains created by one grain at the
time step. By mapping this model to a branching process
straightforward to show@7,11# that if m21, then the system
is in a critical state and the distributions of both avalanc
sizesD3(s) and durationsDt(t) are described by power law
Ds(s);s2t11 andDt(t);t2b, with the usual values for the
exponentst55/2 andb52. If mÞ1, then the criticality is
destroyed and there appears a characteristic avalanche
sco and characteristic avalanche durationtc0: Ds(s)
;s2t21 exp(2s/sco) and Dt(t);t2b exp(2t/tco) with sco
;1/(12m)2 and tco;1/(12m).

To find the value ofm in the steady state, eventuall
reached by the system, one can write the master equatio
this model, which is, as usual, a balance equation, sta
that the change in the number of sites of a given heighi
equals the number of sites that change their height asi
minus the number of sites of heighti , which change their
heights fromi to some other value:

Pi~ t11!5Pi~ t !1(
j50

`

@Pj~ t !Tji ~ t !2Pi~ t !Ti j ~ t !#, ~1!

wherePi(t) is the fraction of sites of heighti at time t and
Ti j is the transition probability for any given site of heig
i to change its height toj . If one makes an approximatio
that there are only sites with heights of 0, 1, 2, and 3 and
P2!1 andP3!1, then the relevantTi j are

T015T215T325hv01~12h!v1 ,

T025hv11~12h!v2 ,

T035T235hv2 ,

T205T315~12h!v0 ,

T105pAcT20,

T125~12pAc!T011pAcT02,

T135~12pAc!T021pAcT03,

T3050,

where
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v0512A1A2/2,

v15A2A2,

v25A2/2.

A5(22e)@P2(t)1P3(t)#1(12e)pAcPi(t) is the number
of grains of sand, redistributed at time stept, and Ac
5T01@P0(t21)1P2(t21)#/P1(t) is the probability of a
site with 1 grain to have received a grain during the previo
time step.Ac is the ratio of the total number of sites with
grain to the number of sites that 0 or 2 grains at the prec
ing time step and received 1 grain, thus turning into a s
with 1 grain. The transition probabilitiesTi j are calculated
by a straightforward generalization of the procedure
scribed in@7#.

In this approximation one finds in the usual lim
e,h/e→0 that in the steady stateP051/(22p), P15(1
2p)/(22p), P2 ,P3→0. In this limit, m5pP012P151
and the system self-organizes to a critical steady state c
acterized by the absence of a characteristic time or len
scale, independent of the temperature, as long as it is fi
The caseT5` (p51) is special because here not only
the average number of grains created by one grain,m, 1, but
the actual number of grains created by one grain at ev
time step is exactly 1. IfT5`, then in the steady state the
is only one sand grain in the system and that grain is hopp
around forever, representing one infinite avalanche.
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To summarize, we have introduced a temperaturelike
rameter in the mean-field model of sandpiles and show
that in our model SOC exists at allT,`, in contrast with
other models@3# and in agreement with the findings of@6#.
Thus, our results demonstrate that SOC in sandpile mode
robust with respect to thermal fluctuations, which can h
explain why fractals in nature are not destroyed by th
fluctuations. The difference between effects of the tempe
turelike parameter on the SOC models considered in@3# and
sandpiles is due to the fact that the dynamics of the mod
considered in@3# are extremal. In these extremal models,
every time step the dynamics are restricted to the ‘‘smalle
site, the site where the pinning force is minimal~growth
models! or the site representing the species with the smal
barrier to mutate~evolution model!. In such models, the in-
troduction of even an infinitesimally small temperature
lows all sites to participate in the dynamics. Because of th
the chances of choosing the smallest site become neglig
although other sites have a smaller probability of being c
sen, there are a lot of them. As a result, the dynamics of
model change completely. In contrast, in sandpiles the in
duction of a temperaturelike parameter is equivalent
changing local rules, which do not affect the global dyna
ics. Thus sandpiles are truly self-organized and critical,
like their cousins involving extremal dynamics.

I am indebted to Jayanth Banavar and Amos Maritan
useful discussions.
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